The graduate program in mathematics offers master’s degrees in pure mathematics, industrial/applied mathematics, mathematical computer science and teaching in mathematical sciences. The program is self-contained and accommodates both full-time and part-time students, with all courses scheduled in the evenings.

Students who complete their degree have many career options. Some go onto an academic career teaching at the college level or earning a doctoral degree. Those who pursue the industrial and applied mathematics or mathematical computer science track are prepared for careers in research and consulting. Students who successfully complete the teaching in mathematical sciences concentration strengthen their teaching skills and become proficient in instructional technology.

ADMISSIONS REQUIREMENTS
- Online application (gradstudy.rutgers.edu/apply/overview)
- A bachelor’s degree in science or mathematics, with a GPA greater than 3.0 (If your degree is not in science/mathematics, you need to have taken Calculus I, II, and III, and Differential Equations and/or Linear Algebra.)
- GRE scores
- Two letters of recommendation
- If your degree is not in science/mathematics, then you need to have taken Calculus I, II, and III, and Differential Equations and/or Linear Algebra.
- For the industrial/applied mathematics track, basic knowledge of C++ is also required.

FUNDING OPPORTUNITIES
The Graduate School offers competitive funding opportunities in the form of fellowships, scholarships, and tuition remission awards. These awards are determined by the graduate department’s admissions committee and do not require an additional application. The mathematics program awards several teaching assistant positions each year, and awards are determined by the department’s admissions committee. No additional application is necessary to be considered for these positions.

DEGREE REQUIREMENTS
30 total credits
- Writing requirement, which consists of either a long project/paper for one of the courses or a master’s thesis.
- Comprehensive exams, which consist of three exams in three courses decided upon by the student.

PURE MATHEMATICS
The pure mathematics track is designed to provide both a solid preparation in core areas of pure mathematics (algebra, real and complex analysis, and geometry/topology) as well as a foundation for pursuing a Ph.D. degree in mathematics or teaching mathematics at the college level. There are five required courses and five elective courses.
INDUSTRIAL/APPLIED MATHEMATICS
The industrial/applied mathematics track is designed to give a very broad yet rigorous training in diverse areas where mathematics provides powerful applications in the sciences and industry, such as statistics, modeling, combinatorial optimization, encryption, and signal processing. The minimum requirement to complete the track is to take the six required courses and four elective courses.

MATHEMATICAL COMPUTER SCIENCE
The mathematical computer science track is designed to give a very broad yet rigorous training in diverse areas where mathematics provides powerful applications in computer science, such as combinatorial optimization, encryption, signal processing, and parallel supercomputing. The minimum requirement to complete the track is to take the five required courses and five elective courses.

TEACHING IN MATHEMATICAL SCIENCES
The teaching in mathematical science track is designed to strengthen a student’s knowledge in mathematics, and statistics to provide an in-depth study of mathematics teaching, and to develop the ability to handle and understand the use of state-of-the-art instructional technology. In addition, the program can be tailored to satisfy education requirements for certification if needed. This track also offers a teacher preparation program, leading to New Jersey state teacher’s certification. The minimum requirement to complete the track is to take the six required courses and four elective courses.

FACULTY AND RESEARCH AREA
- Dinesh D. Bhoj (Ph.D., University of Pennsylvania) professor | statistics
- Nawaf Bou-Rabee (Ph.D., California Institute of Technology) assistant professor | probability theory
- Siqi Fu (Ph.D., Washington University) professor | complex analysis
- Joseph Gerver (University of California, Berkeley) professor | dynamical systems
- Haydee Herrera (Ph.D., State University of New York at Stony Brook) associate professor; program director | differential geometry
- Howard Jacobowitz (Ph.D., New York University) professor II | complex analysis
- Debashis Kushary (Ph.D., Rutgers University) associate professor | statistics
- Will Y.K. Lee (Ph.D., State University of New York, Stony Brook) associate professor | statistics
- Haisheng Li (Ph.D., Rutgers University) professor | algebra
- Mahesh G. Nerurkar (Ph.D., University of Minnesota) professor | dynamical systems
- Benedetto Piccoli (Ph.D., International School for Advanced Studies, Italy) Joseph and Loretta Lopez Chair Professor | applied mathematics, systems biology
- Gabor Toth (Ph.D., Eotvos Lorand, Hungary) professor, department chair | differential geometry
- Yuchung Wang (Ph.D., Rutgers University) professor | statistics
- Martin L. Karel (Ph.D., University of Chicago) associate professor emeritus | algebra

Website: math.camden.rutgers.edu/graduate

Graduate Director Contact Info
Dr. Haydee Herrera
856-225-2667
haydeeh@camden.rutgers.edu