Research Could Lead to Advances in Treatments for Neurological Disorders, Thyroid Diseases

CAMDEN — An innovative research project at Rutgers–Camden that combines computational and experimental science is uncovering information that could lead to advances in treatments for neurological disorders and thyroid diseases.

To solve the puzzle, Rutgers–Camden professors Grace Brannigan and Joseph Martin are studying a protein fundamental to our understanding of the brain: the GABA(A) receptor.

“We’re trying to determine the mechanism through which natural compounds — neurosteroids and thyroid hormones — interact with the GABA(A) receptor,” says Brannigan, an assistant professor of physics in Rutgers–Camden’s Center for Computational and Integrative Biology at Rutgers–Camden.

GABA is an inhibitory chemical that blocks impulses between nerve cells in the brain. A GABA(A) receptor’s job is to detect and respond to GABA. GABA(A) receptors are also regulated by neurosteroids, made from cholesterol, that impact behavior, stress, memory, and depression; and thyroid hormones that also affect these brain functions. 

“Without a constant inhibitory effect on the brain, you could have problems like anxiety or seizures,” says Martin, a professor of biology who directs the Center for Computational and Integrative Biology.

The mystery surrounds how neurosteroids and thyroid hormones work with the GABA(A) receptor. Finding the answer could lead to drug treatments for thyroid diseases, anxiety disorders, and even learning how anesthetics work.

“We want to have a picture of what it looks like when the molecule [GABA] binds to the protein [GABA(A)],” explains Brannigan, who is predicting how they interact with each other using computer modeling. Her calculations are being made on sophisticated computers on the Rutgers–Camden campus and through the National Science Foundation’s XSEDE supercomputers, which support high-end visualization and data analysis resources across the country.

Meanwhile, Martin is testing predictions about where the binding takes place by observing the response of immature frog egg cells which are made to express GABA(A) receptors.

“We’re doing this high-performance simulation to determine how the two interact and where the interaction takes place,” Brannigan says. “People have been trying to develop drugs that mimic these natural neurosteroids and hormones, but the synthetic versions don’t seem to have the effect you’d hope.”

The research could lead to an understanding of how the neurosteroids interact with the receptor, which would then impact various treatments for neurological disorders. The study is being funded by a three-year National Science Foundation grant.

Brannigan, a Philadelphia resident, earned her bachelor’s degree from Reed College and her doctoral degree from the University of California at Santa Barbara.

Martin, of Medford Lakes, earned his bachelor’s degree from Northwestern University and his doctoral degree from the University of Southern California.

Ed Moorhouse
856-225-6759

 

Other News Stories

April 14, 2014

CAMDEN — Future business leaders at Rutgers University–Camden are putting their management skills to use in the real world by planning fundraising projects for area non-profit organizations.

April 10, 2014

Rutgers University–Camden alumni will lead a panel discussion for male undergraduates highlighting the challenges, national dilemma, and expectations that they face after graduation.

April 10, 2014
Grave Brannigan is part of a collaborative research effort to unlock some of the mysteries behind general anesthetics.
April 9, 2014
The John E. Morgan Foundation will provide a $1.5 million challenge grant to help the Rutgers–Camden Community Leadership Center work to transform early childhood education in Camden and elsewhere.
April 9, 2014
Rutgers University–Camden will host an interdisciplinary conference, “Buffy to Batgirl: Women and Gender in Science Fiction, Fantasy, and Comics,” from 9 a.m. to 5 p.m. Friday and Saturday, May 2 and 3.

Pages